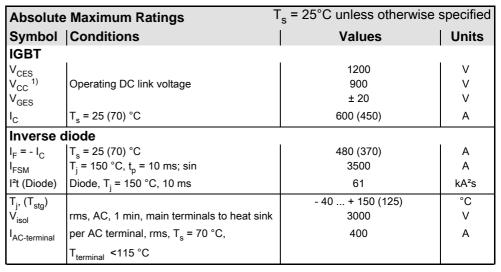
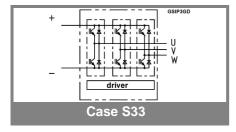

SKiiP 603GD122-3DUW

SKiiP® 3

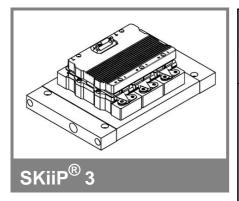

6-pack-integrated intelligent Power System

Power section SKiiP 603GD122-3DUW


Preliminary Data

Features

- SKiiP technology inside
- SPT (Soft Punch Through) IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)



Characteristics T _s = 25°C u						°C unless	otherwise	specified	
Symbol	Conditions			min.	typ.	max.	Units		
IGBT									
V _{CEsat}	I _C = 300 A measured at	A, T _j = 25 (1 terminal	l25) °C;			2,3 (2,5)	2,6	V	
V_{CEO}	T _i = 25 (125) °C; at terminal					1,1 (1)	1,3 (1,2)	V	
r _{CE}	T _i = 25 (125) °C; at terminal					3,8 (5)	4,5 (5,6)	mΩ	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES} , T _i = 25 (125) °C					mA			
$E_{on} + E_{off}$	$I_C^{\prime} = 300 \text{ A}, V_{CC} = 600 \text{ V}$				mJ				
	T _j = 125 °	T _i = 125 °C, V _{CC} = 900 V				mJ			
R _{CC+EE}	terminal c	hip, T _j = 25	5 °C			mΩ			
L _{CE}	top, bottor	top, bottom			12			nΗ	
C _{CHC}	per phase	, AC-side				1		nF	
Inverse o	diode								
$V_F = V_{EC}$	I _F = 300 A measured at		25) °C			1,8 (1,5)	2,3	V	
V_{TO}	T _j = 25 (12	25) °C				1 (0,7)	1,2 (0,9)	V	
r _T	$T_i = 25 (12)$	25) °C				2,6 (2,8)	3,5 (3,7)	mΩ	
Ė _{rr}	$I_{\rm C} = 300 A$	A, V _{CC} = 60	0 V			24		mJ	
	T _j = 125 °	C, V _{CC} = 9	00 V			31		mJ	
Mechani	cal data							•	
M _{dc}	DC termin	nals, SI Uni	ts		6		8	Nm	
M _{ac}		ıals, SI Uni			13		15	Nm	
w	SKiiP® 3 System w/o heat sink					2,4		kg	
w	heat sink					5,2		kg	
	Thermal characteristics (NWK40; 8l/min; 50%glyc.); "s" reference to heat sink; "r" reference to built-in temperature sensor								
R _{th(j-s)I}	per IGBT						0,051	K/W	
R _{th(j-s)D}	per diode						0,1	K/W	
Z _{th}	R _i (mK/W) (max. values)				I	ı			
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	4,2	20,4	23,4	0	69	0,35	0,02	1	
$Z_{\text{th(j-r)D}}$	7,8	12	53,1	53,1	50	5	0,25	0,04	
$Z_{\text{th(r-a)}}$	4,6	4,7	1,1	0,6	48	15	2,8	0,35	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 603GD122-3DUW

6-pack-integrated intelligent Power System

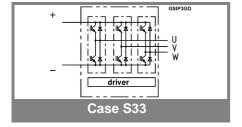
6-pack integrated gate driver SKiiP 603GD122-3DUW

Preliminary Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	T _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	3000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	15	kHz	
f _{out}	output frequency for I=I _C ; sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a =			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	365+30*f/kHz+0,00111*(I _{AC} /A) ²		mA	
V _{iT+}	input threshold voltage (High)	12,3		12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time	1,3		μs	
t _{d(off)IO}	input-output turn-off propagation time	1,3			μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		500		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V) over temperature protection	110	625	120	A °C
U _{DCTRIP}	U _{DC} -protection (U _{analog OUT} = 9 V); (option for GB types)		900	.20	V

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

